Department of Chemistry

Syllabus Module: CBCS

Semeste	Course	Unit	Sub unit	No. of
r	code –			lectures
	CEM-G			
		Kinetic Theory	Concept of pressure and temperature:	4
		of Gases and	Collision of gas molecules: Collision number	
Sem - I	CC1/GE	Real mases	and mean free path. Nature of distribution of	
	1	Keal gases	velocities Maxwell's distribution of speed	
			and kinetic energy: Average velocity root	
			mean square velocity and most probable	
			velocity: Principle of equipartition of energy	
			Deviation of real gases from ideal behavior:	
			compressibility factor: Poyle temperature:	
			Andrew's and Amaget's plate: yen der Waals	
			Andrew's and Anagat's plots, van der waars	
			state. Critical constants in terms of yan der	
			Waals constants: Law of corresponding states	
			waars constants, Law of corresponding states.	
		Liquids	Definition of Surface tension, its dimension	2
			and principle of its determination using	
			stalagmometer; Viscosity of a liquid and	
			principle of determination of coefficient of	
			viscosity using Ostwald viscometer; Effect of	
			temperature on surface tension and coefficient	
			of viscosity of a liquid (qualitative treatment	
			only)	
		Chemical	Introduction of rate law Order and	5
		Kinetics	molecularity: Extent of reaction: rate	5
			constants: Rates of First second and nth order	
			reactions and their Differential and integrated	
			forms (with derivation): Pseudo first order	
			reactions; Determination of order of a reaction	
			by halfhalf-life and differential method.	
			Temperature dependence of rate constant:	
			Arrhenius equation, energy of activation:	

 1	1	1	
	Atomic	Bohr's theory for hydrogen atom (simple	4
	Structure	mathematical treatment), atomic spectra of	
		hydrogen and Bohr's model, Sommerfeld's	
		model, quantum numbers and their	
		significance, Pauli's exclusion principle,	
		Hund's rule, electronic configuration of many-	
		electron atoms, Aufbau principle and its	
		limitations.	
	Chamical	Classification of classents on the basis of	F
	Cnemical	Classification of elements on the basis of	5
	Periodicity	electronic configuration: general	
		characteristics of s-, p-, d- and f-block	
		elements. Positions of hydrogen and noble	
		gases. Atomic and ionic radii, ionization	
		potential, electron affinity, and	
		electronegativity; periodic and group-wise	
		variation of above properties in respect of s-	
		and p- block elements.	
	Acids and bases	Brönsted–Lowry concept, conjugate acids and	4
		bases, relative strengths of acids and bases,	
		effects of substituent and solvent, differentiating	
		and leveling solvents. Lewis acid-base concept,	
		classification of Lewis acids and bases, Lux-	
		Flood concept and solvent system concept. Hard	
		and soft acids and bases (HSAB concept),	
		applications of HSAB process.	
	Fundamentals	Flectronic displacements: inductive effect	3
	of Organic	resonance and hyperconjugation: nucleophiles	5
	Chemistry	and electrophiles: reactive intermediates:	
	Chemistry	carbocations carbanions and free radicals	
		care of caroanons, caroanons and free fudicals.	
	Stonocohomistr	Different types of isomerican association and	0
	Stereocnemistr	ontical isomerican concert of chirality or d	ð
	У	optical activity (up to two corbon stores);	
		optical activity (up to two carbon atoms);	
		asymmetric carbon atom; interconversion of	
		Fischer and Newman representations;	
		enantiomerism and diastereomerism, meso	
		compounds; three and erythre, D and L, cis	
		and <i>trans</i> nomenclature; CIP Rules: <i>R/S</i> (only	

r- 11	GE-2	Chemical Thermodynami cs:	Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics;	lectures
Somosto	Dapar	115:4	6.Estimation of Fe(II) and Fe(III) in a given mixture using K ₂ Cr ₂ O ₇ solution.	No. of
			 4. Estimation of Fe (II) ions by titrating it with K2Cr2O7 using internal indicator. 5. Estimation of Cu (II) ions iodometrically using Na2S2O3. 	
			 2. Estimation of oxalic acid by titrating it with KMnO4. 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO4. 	
	CC1/GE 1 (PR)		1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.	40
		Nucleophilic Substitution and Elimination Reactions	<i>Nucleophilic substitutions</i> : SN1 and SN2 reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations.	3
			one chiral carbon atoms) and <i>E/Z</i> nomenclature.	

		statement of first law; enthalpy, H; relation	2
		between heat capacities, calculations of q, w,	
		ΔU and ΔH for reversible,	
		irreversible and free expansion of gases.	
		Standard states; Heats of reaction; enthalpy of	1
		formation of molecules and ions and enthalpy	
		of combustion and its applications; Laws of	
		thermochemistry, Kirchhoff's equations.	
		Statement of the second law of	3
		thermodynamics; Concept of heat reservoirs	
		and heat engines; Carnot cycle;	
		Physical concept of Entropy; Entropy change	
		of systems and surroundings for various	
		processes and transformations; Auxiliary state	
		functions (G and A) and Criteria for	
		spontaneity and equilibrium.	
	Chemical	Thermodynamic conditions for equilibrium,	2
	Equilibrium:	degree of advancement; Variation of free	
		energy with degree of advancement;	
		Equilibrium constant and standard Gibbs free	
		energy change; Definitions of KP, KC and Kx	
		and relation among them;	
		van't Hoff's reaction isotherm, isobar and	1
		isochore from different standard states;	
		Shifting of equilibrium due to change in	
		external parameters e.g. temperature and	
		pressure; variation of equilibrium constant	
		with addition to inert gas; Le Chatelier's	
		principle	
	Redox reactions	Ion-electron method of balancing equation	3
		of redox reaction. Elementary idea on	
		standard	
		redox potentials with sign conventions,	
		Nernst equation (without derivation).	
		Influence of	

	complex formation, precipitation and	
	change of pH on redox potentials; formal	
	potential.	
	1	
	Feasibility of a redox titration, redox	1
	potential at the equivalence point, redox	
	indicators	
	Indicators	
Error Analysis	<i>Error analysis</i> : accuracy and precision of	3
and Computer	quantitative analysis determinate	
A pplications	indeterminate, systematic and random errors:	
representations	methods of losst squares and standard	
	devictions	
	deviations.	
	<i>Computer applications</i> : general introduction	
	to computers different components of a	
	computer: hardware and software: input and	
	output devices: binery numbers and	
	suitherstice later destion to	
	arithmetic; introduction to	
	computer languages	
Solutions	Ideal solutions and Raoult's law, deviations	2
	from Raoult's law – non-ideal solutions;	
	Vapour pressure-composition and	
	temperature-composition curves of ideal and	
	non-ideal solutions: Distillation of solutions:	
	Lever rule: A zeotropes Nernst distribution	
	law and its applications, solvent extraction	
	law and its applications, solvent extraction	
Phase	Phases, components and degrees of freedom	2
Equilibria	of a system, criteria of phase equilibrium:	
	Gibbs Phase Rule: Derivation of Clausius –	
	Clapevron equation and its importance in	
	phase aquilibria: Dhase diagrams of one	
	phase equilibria, i hase diagrams of one-	
	component systems (water and CO ₂)	
Solids	Forms of solids crystal systems unit cells	2
	Bravais lattice types Symmetry elements:	
	Laws of Crystallography Law of constancy	
	of interfacial angles. Law of rational indicase	
	or internatian angles, Law or rational indices;	
	Millor indices of different planes and	
	Miller indices of different planes and	
	Miller indices of different planes and interplanar distance, Bragg's law;	

	Aliphatic	Functional group approach for the following	3
	Hydrocarbons	reactions (preparations & reactions) to be	
		studied in context to their structures.	
		Alkanes: (up to 5 Carbons). Preparation:	
		catalytic hydrogenation Wurtz reaction	
		Kolhe's synthesis	
		Koloe 5 Syllelesis.	
		Alkenes: (up to 5 Carbons). Preparation:	
		elimination reactions: dehydration of alcohols	
		and dehydrohalogenation of alkyl halides; cis	
		alkenes (partial catalytic hydrogenation) and	
		trans alkenes (Birch reduction). Reactions:	
		addition of bromine, addition of HX	
		[Markownikoff's (with	
		mechanism) and anti-Markownikoff's	
		addition by dration ozonolysis	
		Alkynes: (up to 5 Carbons). Preparation:	
		acetylene from CaC ₂ ; by dehalogenation of	
		tetra halides and dehydrohalogenation of	
		vicinal dihalides.	
GE-2	Practical	Experiment 1: Study of kinetics of acid-	24
		catalyzed hydrolysis of methyl acetate	
		Experiment 2: Study of kinetics of	
		decomposition of H_2O_2 (Clock Reaction)	
		Experiment 3: Study of viscosity of	
		unknown liquid (glycerol, sugar) with	
		respect to water.	
		Experiment 4: Determination of solubility	
		of sparingly soluble salt in water, in	
		electrolyte with common ions and in neutral	
		electrolyte (using common indicator)	
		Experiment 5: Preparation of buffer solutions	
		and find the pH of an unknown buffer	
		solution by colour matching method	

			Experiment 6: Determination of surface	
			tension of a liquid using Stalagmometer	
				N 6
Semes	Paper	Unit	Sub unit	NO. Of
ter- III				lectures
	GE-3	Chemical Bonding and Molecular Structure	<i>Ionic Bonding:</i> General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.	8
			<i>Covalent bonding:</i> VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds.	3
			MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for <i>s-s</i> , <i>s-p</i> and <i>p-p</i> combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods. (including idea of <i>s- p</i> mixing) and heteronuclear diatomic molecules such as CO, NO and NO+. Comparison of VB and MO approaches.	4
		Comparative study of p- block elements:	Group trends in electronic configuration, modification of pure elements, common oxidation states, inert pair effect, and their important compounds in respect of the following groups of	5

		elements:	
		i) B-Al-Ga-In-Tl	
		ii) C-Si-Ge-Sn-Pb	
		iii) N-P-As-Sb-Bi	
		iv) O-S-Se-Te	
		v) F-Cl-Br-I	
	Transition Elements (<i>3d</i> series)	General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu.	4
		Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).	2
	Coordination Chemistry	Werner's coordination theory, Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Drawbacks of VBT. IUPAC system of nomenclature	5
	ELECTROCH EMISTRY	1) Ionic Equilibria Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts; Buffer solutions; Solubility and solubility product of sparingly soluble	4

		salts - applications of solubility product	
		principle	
		2) Conductance	4
		Conductance, cell constant, specific conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch's law of independent migration of ions; Equivalent and molar conductance at infinite dilution and their determination for strong and weak electrolytes; Ostwald's dilution law; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations	
		(acid-base) Transport Number and principles Moving-boundary method	
	Flootromotivo	Foreday's laws of algotrolysis rules of	E
	force	oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry; Chemical cells, reversible and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential; Electrochemical series; Concentration cells with and without transference, liquid junction potential; pH Determination using hydrogen electrode and quinhydrone; Qualitative discussion of potentiometric titrations (acid- base, redox, precipitation)	J
	Aromatic Hydrocarbons	<i>Benzene: Preparation</i> : from phenol, by decarboxylation, from acetylene. <i>Reactions</i> : electrophilic substitution reaction (general mechanism); nitration (with mechanism), halogenations (chlorination and bromination),	2

			and Friedel-Crafts reaction (alkylation and acylation) (up to 4 carbons on benzene).	
		Organometallic Compounds	Introduction; <i>Grignard reagents</i> : <i>Preparations</i> (from alkyl and aryl halide); Reformatsky reaction.	1
		Aryl Halides	<i>Preparation:</i> (chloro- and bromobenzene): from phenol, Sandmeyer reactionand effect of nitro substituent (activated nucleophilic substitution	1
	GE-3 (PR)	Qualitative semimicro analysis of mixtures containing two radicals.	Cation Radicals: Na ⁺ ,K ⁺ , Ca ^{2+,} Sr ^{2+,} Ba ²⁺ , Al ³⁺ , Cr ³⁺ , Mn ²⁺ /Mn ⁴⁺ , Fe ³⁺ , Co ²⁺ /Co ³⁺ , Ni2+, Cu ²⁺ , Zn ²⁺ , Pb ²⁺ , Sn ²⁺ /Sn ⁴⁺ , NH ⁴⁺ , Anion Radicals: F ⁻ , Cl ⁻ , Br ⁻ , BrO ³⁻ , I ⁻ , IO ³⁻ , SCN ⁻ , S ²⁻ , SO4 ²⁻ , NO ³⁻ , NO ²⁻ , PO4 ³⁻ , AsO4 ³⁻ 'BO ₃ ³⁻ , CrO4 ²⁻ /Cr2O7 ²⁻	40
Semes ter- IV	Paper	Unit	Sub unit	No. of lectures
	GE-4	Alcohols, Phenols and Ethers	Alcohols: (up to 5 Carbons). Preparation: 1°-, 2°- and 3°- alcohols: using Grignard reagent, reduction of aldehydes, ketones, carboxylic acid and esters; Reactions: With sodium, oxidation (alkaline KMnO4, acidic dichromate). Diols: Pinacol- pinacolone rearrangement (with mechanism) (with symmetrical diols only).	3
			<i>Phenols: Preparation:</i> cumene hydroperoxide method, from diazonium salts; acidic nature	2

		substitution: nitration and halogenations;	
		Reimer – Tiemann reaction, Schotten –	
		Baumann reaction, Fries rearrangementand	
		Claisen rearrangement.	
		Ethers: Preparation: Williamson's ether	
		synthesis; Reaction: cleavage of ethers with	
		HI.	
	Carbonyl	Aldehydes and Ketones (aliphatic and	5
	Compounds	<i>aromatic):</i> (Formaldehye, acetaldehyde,	
		acetone and benzaldehyde): Preparation:	
		from acid chlorides, from nitriles and from	
		Grignard reagents; general properties of	
		aldehydes and ketones; Reactions: with HCN,	
		NaHSO3, NH2-G derivatives and with	
		Tollens' and Fehling's reagents; iodoform	
		test: aldol condensation (with mechanism):	
		Cannizzaro reaction (with mechanism), Wittig	
		reaction, benzoin condensation; Clemmensen	
		reduction, Wolff- Kishner reduction	
	Quantum	Spectroscopy and its importance in	8
	Chemistry &	chemistry Wave-particle duality Link	_
	Snectroscony	between spectroscopy and quantum	
	Specifoscopy	shemistry. Electromegnetic rediction and its	
		chemistry. Electromagnetic radiation and its	
		interaction with matter.	
		Types of spectroscopy Difference between	
		atomic and molecular spectra	
		atomic and molecular spectra	
		Postulates of quantum mechanics, quantum	
		mechanical operators	
		r	
		Free particle. Particle in a 1-D box	
		(complete solution), quantization,	
		normalization of wave functions, concept of	
		zero-point energy	
		Zero point energy.	
		Rotational Motion: Schrödinger equation of	
		a rigid rotator and brief discussion of its	
		results (solution not required). Quantization	
1		results (solution not required). Quantization	

		of rotational energy levels. Microwave (pure rotational) spectra of diatomic molecules. Selection rules. Structural information derived from rotational spectroscopy. <i>Vibrational Motion:</i> Schrödinger equation of a linear harmonic oscillator and brief discussion of its results (solution not	
		energy levels. Selection rules, IR spectra of diatomic molecules.	
	Carboxylic Acids and Their Derivatives	Carboxylic acids (aliphatic and aromatic): strength of organic acids: comparative study with emphasis on factors affecting pK values; <i>Preparation:</i> acidic and alkaline hydrolysis of esters (<i>B</i> Ac2 and <i>A</i> Ac2 mechanisms only) and from Grignard reagents. <i>Carboxylic acid derivatives</i> (aliphatic): (up to 5 carbons). <i>Preparation:</i> acid chlorides, anhydrides, esters and amides from acids; <i>Reactions:</i> Interconversion among acid derivatives. <i>Reactions:</i> Claisen condensation; Perkin reaction.	2
	Amines and Diazonium Salts	Amines (aliphatic and aromatic): strength of organic bases; Preparation: from alkyl halides, Hofmann degradation; Reactions: with HNO2 (distinction of 1°-, 2°- and 3°- amines), Schotten – Baumann reaction , Diazo coupling reaction (with mechanism). Diazonium salts: Preparation: from aromatic amines; Reactions: conversion to benzene, phenol, benzoic acid and nitrobenzene.	3

		<i>Nitro compounds</i> (aromatic): reduction under different conditions (acidic, neutral and alkaline).	1
	Amino Acids	<i>Amino Acids: Preparations</i> (glycine and alanine only): Strecker synthesis, Gabriel's phthalimide synthesis; general properties; zwitterion, isoelectric point	2
	Carbohydrates	<i>Carbohydrates:</i> classificationand general properties; glucose and fructose: constitution; osazoneformation; oxidation-reduction reactions; ascending (Kiliani –Fischer method) and descending (Ruff's method) in monosaccharides (aldoses only); mutarotation	4
	Crystal Field Theory	Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for <i>O_h</i> and <i>T_d</i> complexes, Tetragonal distortion of octahedral geometry. Jahn-Teller distortion, Square planar coordination	4
GE-4 (PR)	1.Qualitative Analysis of Single Solid Organic Compound(s)	 Experiment A: Detection of special elements (N, Cl, and S) in organic compounds. Experiment B: Solubility and Classification (solvents: H2O, dil. HCl, dil. NaOH) Experiment C: Detection of functional groups: Aromatic-NO2, Aromatic -NH2, - COOH, carbonyl (no distinction of –CHO and >C=O needed), - OH (phenolic) in solid organic compounds. Experiments A - C with unknown (at least 6) solid samples containing not more than two of the 	40

	above type of functional groups should be done.	
2.Identification of a pure organic compound	<i>Solid compounds</i> : oxalic acid, tartaric acid, succinic acid, resorcinol, urea, glucose, benzoic acid and salicylic acid. <i>Liquid Compounds</i> :methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene	